Online Real-Time Preemptive Scheduling of Jobs with Deadlines on Multiple Machines∗
نویسندگان
چکیده
In this paper, we derive bounds on performance guarantees of online algorithms for real-time preemptive scheduling of jobs with deadlines onK machines when jobs are characterized in terms of their minimum stretch factor α (or, equivalently, their maximum execution rate r = 1/α). We consider two well known preemptive models that are of interest from practical applications: the hard real-time scheduling model in which a job must be completed if it was admitted for execution by the online scheduler, and the firm real-time schedulingmodel in which the scheduler is allowed not to complete a job even if it was admitted for execution by the online scheduler. In both models, the objective is to maximize the sum of execution times of the jobs that were executed to completion, preemption is allowed, and the online scheduler must immediately decide, whenever a job arrives, whether to admit it for execution or reject it. We measure the competitive ratio of any online algorithm as the ratio of the value of the objective function obtained by this algorithm to that of the best possible offline algorithm. We show that no online algorithm can have a competitive ratio greater than 1− (1/α)+ ε for hard real-time scheduling with K ≥ 1 machines and greater than 1 − (3/(4 α )) + ε for firm real-time scheduling on a single machine, where ε > 0 may be arbitrarily small, even if the algorithm is allowed to know the value of α in advance. On the other hand, we exhibit a simple online scheduler that achieves a competitive ratio of at least 1 − (1/α) in either of these models with K machines. The performance guarantee of our simple scheduler shows that it is in fact an optimal scheduler for hard real-time scheduling with K machines. We also describe an alternative scheduler for firm real-time scheduling on a single machine in which the competitive ratio does not go to zero as α approaches 1. Both of our schedulers do not know the value of α in advance.
منابع مشابه
A Multiprocessor System with Non-Preemptive Earliest-Deadline-First Scheduling Policy: A Performability Study
This paper introduces an analytical method for approximating the performability of a firm realtime system modeled by a multi-server queue. The service discipline in the queue is earliestdeadline- first (EDF), which is an optimal scheduling algorithm. Real-time jobs with exponentially distributed relative deadlines arrive according to a Poisson process. All jobs have deadlines until the end of s...
متن کاملOnline real-time preemptive scheduling of jobs with deadlines
In this paper, we derive bounds on performance guarantees of online algorithms for real-time preemptive scheduling of jobs with deadlines on K machines when jobs are characterized in terms of their minimum stretch factor α (or, equivalently, their maximum execution rate r = 1/α). We consider two well known preemptive models that are of interest from practical applications: the hard real-time sc...
متن کاملA Non-Preemptive Two-Class M/M/1 System with Prioritized Real-Time Jobs under Earliest-Deadline-First Policy
This paper introduces an analytical method for approximating the performance of a two-class priority M/M/1 system. The system is fully non-preemptive. More specifically, the prioritized class-1 jobs are real-time and served with the non-preemptive earliest-deadline-first (EDF) policy, but despite their priority cannot preempt any non real-time class-2 job. The waiting class-2 jobs can only be s...
متن کاملOnline Scheduling of Jobs for D-benevolent instances On Identical Machines
We consider online scheduling of jobs with specic release time on m identical machines. Each job has a weight and a size; the goal is maximizing total weight of completed jobs. At release time of a job it must immediately be scheduled on a machine or it will be rejected. It is also allowed during execution of a job to preempt it; however, it will be lost and only weight of completed jobs contri...
متن کاملNew Results on Online Resource Minimization
We consider the online resource minimization problem in which jobs with hard deadlines arrive online over time at their release dates. The task is to determine a feasible schedule on a minimum number of machines. We rigorously study this problem and derive various algorithms with small constant competitive ratios for interesting restricted problem variants. As the most important special case, w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000